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ON SELF-SIMILAR SOLUTIONS FOR THE COLLAPSE OF AN EMPTY
CYLINDRICAL HOLLOW IN A GAS WITH EQUATION OF STATE p = Sp*.

N. 8. Kozin

Let us consider the collapse of an empty cylindrical hollow in a gas with
equation of state p = sp«, The motion of the gas outside the hollow is described
by the equations ’

t
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where u is the velocity of the gas, ¢ is the velocity of sound, r is a space co-
ordinate, t is the time, a=2/(x—1), (x being the adiabatic exponent), S is the
entropy of the flow, and S is a constant. The free boundary of the gas is a
cylinder of radius R(t). On the free boundary, the pressure p is equal to 0 and
the velocity of the gas coincides with the velocity of the free boundary: u = dR/dt.

We assume the solution to be self-similar, that is, invariant under trans-
formations of the similarity group Gk: ‘

e BRt,  ir—Pr, u—> pi—ky, ¢~ pi-he, :
i

where k is a parameter in the group, called the self-similarity exponent. To
solve the problem posed, we need to ascertain for what values k™ of the parameter
k does there exist a solution of the system (1) with the corresponding boundary
conditions. In all the cases considered, the value of k* was determined numeri-
cally. The asymptotic dependence of k on . which we indicate by writing K (1),
is given for large values of x. "

The present problem, its statement, and methods of solving it are analogous
to the problem on the collapse of an empty spherical hollow, the solution of
which is described in detail in [1],

Section 1

. The solution of this problem is simplified by the fact that the invariance of
the equations in the system (1) and of the boundary conditions under the similarity
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~group G, enables us to reduce the system (1) to a system of ordinary differential
equations, Specifically, if we take for the independent variables t and § = %,
and if we take for the unknown functions:e(§) and ¥(¢) which are connected with the
functions u and ¢ by the relations

JmtEmETe gt@=eee

we obtain instead of (1) the system }

. . d . . !
4ak(a—1) (5 —1 )é_—;(a—i)M—}-_(a-g-nN,
P N . , (2)
dabla =6 =7 = (a+ U+~ O,

"
I
+

where

M, b) =N(b; a) = (1—a) {[(t+ )bk (1—a)a) (1 —b/ k) -+ (a*— vy Jom,
We shall assume that t < 0 prior to the instant of focusing, that =0 at the
instant of focusing, and that ¢ > o after the collapse.

Thr requirement that the functions u and ¢ remain bounded as 7—0 leads to
the condition

a0y = b(0) =0, (3)

By virtue of the self-similarity, the free boundary is the line & = & = const,
Then, from the fact that u = dR/dt along the line & =&, it follows that

a(E) =b(E) = 1. @)
The condition that the velocity of sound be nonnegative imposes a restriction on

- the choice of functions a(t) and »(3), namely,

1 H

ey, . t<0; (5)

a=b >0 (6)

Thus, the restriction (3)-(6) is a system of boundary conditions for (2).
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Instead of the system (2), 1et us look at the equivalent system

f(db (@t 4= NN~
| da (u——i)M—i—(a-{-i)N

(7)

p K ' 4§a(1‘;"‘a)“(1 ‘—"z;j'"kw
s da (a-1)M+(a+1>N T

1

(®)

A

Integration of the system (7)-(8) reduces to integration of equation (7) and to a
quadrature.

_ To solve the problem posed, we need to know the value k™ of the parameter
k at which Eq. (7) has an integral curve connecting the singular points a = 0,

b=0anda=1, b =1 that lies in the half-plane » = « of the phase plane of the

equation. Therefore, we shall henceforth be primarily interested in Eq. (7).

It has nine singular points, a fact that complicates considerably the search for

the value of k* and the solution corresponding fo it. \

We have
0: a=0, b=0is a dictritical node for all values of k;
M: a=1, b=1 is a saddle for all values of k;

K: a=k, b=k is a node for all values of k;

[

Nand Ny a= (a—1)(k—1) £V (@~ 1)k — 1)+ 1—2(1 + ) (k= 1)), b=1;
Nsand N a=1, b= (0'-*1)(’4'—1) A V[(o—1)2(k—1)2 -1 —2(1 4 a) (k— 1)];

Let us look at the singular points N; and N,. These are real for all & < ks,

where ks =1/ (1+70)2+1. In all the calculations that we have made, * varied
between 5/3 and 3. In this interval, the nature of the singular points, N, and
N2 is as follows: for every singular point, there exist numbers k and k2 such
that * < k < ks and, for & <k, the corresponding singular point is a focus; for
k1< E<k, itis a node and for k. <k < &y, it is a saddle. The numbers k

and k2 depend, as was stated above, on the point.. For the singular point Nl’

we have

-



Ra(h) K] (et A /72

i‘igure 1 shows a graph of l«:1 IO
Ty Yty Tho behavior of kl (%) was determined

" kf %) : TS numorionlly, The relative position of the
' " singular points and the isoclines of Eq. (7)

nro shown in Figs, 2 and 3. Figure 2
raprosonts the case & < &k < k5 Fig, 3

- roprononts the case & < k < k.. Physical
consldorations, which are discussed in
dotail in [1], impose yet another restriction
on tho poﬂsible values of k, namely, the
roquiroment that » > 1. .

Lot us turn now to the construction of
the solution that we are seeking. Then,
(1.1) I8 a saddle because this integral curve
mu#t boe one of the separatrices of the singular
polnt, ‘The linearization (7) close to (1.1).
phows that the saddle has two enfrance
, throotions: b-1 = a-1 and b-1 = 1-a, The
s 208 ] firnt direction corresponds to the trivial

Figure 1 nolution a & b; the second, to the solution

' that we are seeking. It follows from this
thnt, for the solution to pass through the
point (0, 0), it must inlorsect tho lino b = 1, (We note that the solution must
lie in the region & ;= . 8inco in tho prodont case t < 0)

¥
However, the trajoctory ocan lnlorsoat the line b = 1 only at a singular point.

If this were not the case, whon wo inlograte equation (8) along the trajectory,
the function &(s) would bo nonmonaotonlo, which is impossible.

It follows that the solution must Inlorsoct the line b = 1 either at the point
| Nl or at the point NQ. Caloulations havo shown that in all cases the trajectory
passes through Nl' The aingular poing N1 corresponds to the characteristic
of the system (1) that ronchos the contor at the instant of focusing of the hollow [1],

- Therefore, for n solution to oxist, it is necessary that N, be either a node
or a saddle, that in, that & << b« Alﬂo. k must be greater Jthzua 1. In general,

for every value of k in the intorval max (i, &1} <k < ka2, the problem posed has a
solution. The solution 18 not unique, but all solutions pass through the point N1

with a weak discontinuity, In fact, the characteristic corresponding to N, was in ‘
no way singled out in the initial conditions, This leads to the natural requirement

- that the solution being aought bo mmlytlo at the point Nl



Hootlon 2

Numerecial anloulations of tho wnnlylie solution were made completely in

. analogy with tho onloulntions for thiy oollupso of a sphercial hollow,

The fundamontal fontures of the method reduce to the following: two analytic
curves, the so-onllal poparatrioon, pnis through the node N, It is just these
separatrices thal onn sorvo ng tho #olulion of the problem posed. Therefore,
to construct tho solution that wo are snooking, we need to find the value of the
~ parameter k are which ono of the kopnratricos passes through the points (0, 0)

. and (1, 1),

If the desirod solution colnoldon with the separatrix of common direction,
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 the numercial dotormination of k* mul tho linding of the corresponding solution - 5

.- present considerablo diffjoullion, b this case, the expansion of the solution

 close to N, is of tho form L
: » > 4
3

b-1 o A|(“ m”‘) wje Aﬂ(“ m,,‘)a o .+A,,(a~—.a,)" +C(a—a)* +

fednpifo e a) it

where (al, 1) are the coordinates of N1 and A(% ) ig the ratio of the eigenvalues

of the matrix consisting of the linoar terms in equation (7) obtained from the
expansion of (7) close to the point Nl' Thus, from the point N1 there issues a

pencil of curves the first n terms in the expansion of all of which are the same .
in a neighborhood of the point Nl’ and the problem consists in numerical

determination of one of them, namely, the analytic curve corresponding in the
expansion to the value C = 0, To single out this curve, we introduce the variables

. bowdom Ay(i = a)) o, me Ay (@ =a)™ . - :
1) e A - —Apyy ET=a—ay 9) .

At x = 0, the value of 1 is oqual to 0 only for the analytic solution that we are
seeking. For the remaining curvows In the pencil, the value of n at x = 0 is co.

Below, we shall describe the mothod of automation of the shift to the vari-
- ables (9) proposed by Ya, M, Kazhdan, To do this, we make the cha:nge of
variables y = b~1, x = a-a, in oquation (7). AT :

R
t

In the new variables, equation (7) becomes

-t -~ ;. i3

| _‘}; s ( 2‘ ay, mwlym )(2“ bl mz-l”m ) Y v

B AR (10) |

el

The substitution (9) i8 done inn + 1 steps., The first is as follows:
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e a(fyot A)

Then,

e L(amy) T,

BER it et o
A )Ibu.'x‘yh :

where the coeffioienta en'' and b are calculated from the formulas



» | Rt £ S
(k o 1 ...(I»+l) ; MY

b“““;“ B ? l’"ﬂ-“h%hﬁ‘}’ e ) l""’"'.“"-"“' A’ " . _21‘; 0’ .

i i J»Q ’ l ) - o R

i o S baahp sl B2k <90, ;

| L]

s : ; ] ’ ZE L
5, Bahh 2 Tnandth = Abyniin b bnanigsy - k50,
¥ ow W . =

o By " / ;
v ; o B e = Abugge s

~ where

| wel) . R . |
| - LA EY))
D nah }J Ayalth o b bt : T Ay n=2k =0
"' = L e

- Bawph®20, ne=2k<0,. . . -

" In these substitutions, ‘A agsumes the values A Aoy i B An + and is calculated ?}

as follows:

In the first vstep,‘

év 4! : a(..'?- bm -{'t ]/(((lm - bm)’w{- Ilb(ualo] , o : | :’ k ot
C Ay e : v . "
| 2byy ) =l

in all the remaining steps,

1)

A‘ e s

g = apy

" Thus, the entire calculation is automated, Unfortunately, increase in the value ,
of i is accompanied by a sharp increase in awn, bu and 4, which causes considerable -
computational difficulties, In practice, we have succeded in investigating on the -

‘machine only those values of k fox which 1<a <35,

The calculations that we havo mado showed the following dependence of k* ‘
onx: o : :

1 %= 2,05k ea 1,00827 .
D xma 240 k% e 4,0405,
=248 ke 05 | . .
=220 ke d,006 || along a separatrix of common direction
| %205 ke 400G | ' e
Pre=280 0 N m 407600 |
HeB00 Kt 148000

along an individual separatrix' k



, The graph of #*(x) {8 shown in I'lg, 1, Onc can see from that graph that the /248 -
curve k*(x) must intorsoot the line k = 1 in n neighborhood of the point » = 2. e e

o This is borne out by the calculntlons, Specifically, for x = 2 there is no ‘ i
. index of self-similarity in the intorval 1« &'< 1,035, This brings up the S

. thought that there may be either an index k « 1,0r a second index of self-

 similarity, In Section 4, we shall show thut there is no index of self-s1m11ar1ty e
for k<. :

Soation 3

i After the focusing of the hollow ns In the spherical case, a shock wave is
< reflected from the contor, This I8 oxplnined by the following considerations: We
cannot assume tho solutionof our problom to be continuous. Therefore, the

+ integral curve of oquntion (7) correnponding to the desired solution intergects

. thecurvea=1atn point othor than n ningular point — as the calculations :
- show. This leads to tho fuot that, when wo integrate (8) along the integral curve -
- &(a), we obtain a nonmonotonic funotlon, which, of course, is absurd,

. Therefore, wo ngaumo tho oxislonon of n discontinuity in the solution the
. saltus at which 18 dolerminod by tho usunl relations on a shock wave:

' % % B r;
(D L m)“m Vl vﬁ*:{ij" | ("l e u‘)' [ (pz e p.l)ﬁ(Vg 'l—;Vg),t
' (11)

S Ay By ALLL’L(V‘ - Vs).

 Here, the subscript 1 corvosponds lo the state of the gas in front of the wave
and 2 corresponds Lo tho winte bohind the wave; D is the velocity of the shock
wave; E is the Internal onorgy; V ia the specific volume.

If we introduce the notation 4 = ps /p and the self-gimilar functmns
b= (r 18U E) and e wa (r/t)C(R)y WO 0NN rowrite (11) in the form

SRR 1 n%st)-s—-1 ‘ Ua—'lf.‘)z"" “\:’2(71"“1)

— Ut M——u%umw S '

(7-%) : Ca e
T R (12)

Gy “'k‘+1+n(u—¥1i S
( ) =l nlxt1)

Gl

which is more convenient for detormining the shock wave. To study the behavior
of the solution after focusing for largoe values of § we note that, at the center,
the velocity u is equal to 0 and the veoloclty of sound is finite. Then, as g—r oo,
-.the quantity C(E) =+ 0. and U(}) /€ (&) =0, and we have the asymptotic behavior



Ay o (4 o) by Aud - kg L alk=1 o ke
A’N“'ﬂ ) o:u‘o | ?g‘ 2,‘ ”. g v . (13) f .

U v A° »»'-
1]

eh f The equation for U(C) s ofv the form

ay wa U] (4 o kYCR (1 A k) U2 - 2KC2U — KUS o
(" wot R (] apbpi vt s oxa ey 7 (14)
de e e SR e k(a = 1)] U kaC2 — (1 4 a) kU2 ;

. Integration of the equation for largo values of C with initial conditions (13) gives
the behavior of our solution for lurgo & Piecing of the integral curve that we =~

~ have obtained and connecting (0, 0) and (1,.1) is done in accordance with

. formulas (11) and it gives the complete solution of the problem posed.

w“

*Section 4

Consider the case in which the parameter k in the system (2) is less than .
unity. The singular points and the isoclines of equation (7) are shown in Fig. 4.




From the looationd of tho lpouline ologo to the points M and N 1» We can

;.» easﬂy sce (800 1'ig, B) that tho solitlon (wsuing from the point Mnormally to the
- line b.= a nocosnnrily passos thiough the puth This means that, for there to

be a unique solution uonnootlng 0 vl My wo must restrict ourselves to the case '
in which N la a nodu. : ; ;

. " ! ; Figuro 6, R LA

It follows from this asswmplion thal tho solution passing through the node N1 L

~enters the roglon (v 5» 4 baah 1 Iw nuw obvious that there is no smooth solution
~connecting M mul 0 nineo I munt Inlorsoot tho lines a =1 and b = 1 at other than -
~ singular poinis, which would Jomd n ponmonotonicity of the functions £(¢) and §(»).,

Let us now supposo that thors nre digoontinuities (shock waves) in the
““solution. Lot un wilto tho relntionihipa that holdona shock wave (11) In terms
;.;:Aof aelf-simﬂm' varinhlos, thono are = e

a{ -m;—«»;- ((l N) (n ~M)l ofs dint TP ((2»«’ -(w.-—i)w') ((x-:- 1);=+2w=)1*/,}

h= rm‘s‘ fu "‘”‘“‘*“’"*'4""*4"!mw-—cn—4)w=)<(u-t>s*+zwznv.>. o

" : o lndul'mmﬂ. w-a.-—b.,

. The subseript 1 donoton tho «tuto of tho gas m front of the wave, and the subscnpt e
2 denotes the atato hohind ity - b e R g :
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In the ab-plane, the representation (16) has the following geometrw mterpreta—

;  tion (see Fig. 6): it maps the reglon {s3» 1, & > a) into the region /250

fa 1, b3 tH((r ok 8200~ 1)) — ) /(u’+4;-—‘7/[2n<n;—,~‘1>n,’

" Here, the straight line a = 1 remains in position and the straight lineb=ais
mapped into

b ron o {1 o 4 ofe BY2H (1 o 1)) (0 = 1))}/ = 4 Vi — )]

The region {6 << 1, # 5> o) {6 nlso mppod onto a triangular region adjacent to the St
line b =1, Tho direotion of tlm mumllm5 ig shown by arrows. We are interested -
only in the first roglon {b» 4 5» 1) ginooe it is this region that the trajectory
issuing from the point N, fulls inm I'rom this region, it makes a saltus into
the region {a =<1, b 3= 1), v]huro n smooth golution can be constructed, However,

- there are a number of wnys of chooslng o weak discontinuity at the point Nl,

~ constructing the shock wave, and hence gluing the smooth solution. If we choose

.the wave in such a way that the solution passes through the point Nz, we shall
' obtain one of the solutions of the boundary problem (see Fig, 4). However, the

' striking non-uniquoness of the choioo of solution and the existence of weak

discontinuities at the points N1 and Nz roquire supplementary restrictions.

Mgure 6,

By numerical intogration, wo have established that, at least in N, there

1’
are no analytic solutions in this family,

Thus, we have shown that thoro nro no analytic indices of self-similarity
fork < 1. ; : ; ,

11



In the case that we are considering, just as in the case of spherical symmetry, -

“ the analytic index of self-similarity is not a single-valued function of the adiabatic
index x , Comsiderations on this point discussed in [1] give us a justification for

- .assuming that corresponding to every value of » is an even number of analytic
_indices of self-similarity, '

Suppose that, for x = 3, there are an oven number &t < k? < ... of these
. indices.

Let us call the continuous function k"(x) that is the analytic index for all
~%-and satisfies the condition k™3) = kI, wheren=1, 2, ..., the nth analytic
_ index of self-similarity. Obviously, tho funotion #*(x) that we have constructed

" is m(a. As was indicated abovo, #*(x) conses to exist when x =2 Consequently, SmEsey
for <2 we get the smalleat indox /*(x), By numerical integration, we have P Y e

. found the following values of W A e 3,

CnE

Chwe 0 B) =475
Q,x w 0D K(LD) == 1405
kw24 M) = 1062
B0 K(20) = 1030
wedf) M(10) = 1020

w18 R(L8) = 10022

The graph of 4*(x) i8 shown In I"{g, 1, One can easily see that r*(x) ceases /251

to exist when x << 1.8, In an annlogous way, we can conclude that, for every L

n=3, 4, ..., there oxiats a 1 «2 %, < 18 at which the function %" (x),ceases to

-~ exist and there exists an interval Ax, (1, 18]. for which the nth of self—31m11ar1ty
‘exponent will be the smallest, L

Sootion b

As was pointed out in [1], p, 14, for the case of collapse of a spherical
hollow, we can find tho nsymptotio bohavior of i*(x) as x-», This asymptotic -
behavior corresponds Lo an Incomprossible liquid, which we should consider

"~ as the limiting onso of n comprossible Hquid as x— co;

We can derive analogously tho asymptotic behavior in the cylindrical case.
We note that (7) becomes do éxonﬁraw AB ke 00 (aBu=0), Therefore, we make
~ the substitution z * a(a - b) and thon let o approach zero, When we do so, we
~ get the equation , LT S

: ““".‘m":”""“;"(k‘l‘ﬂ"“z)t

da  la

12



which we can solve, Its solution is

8w Ca'fa o 2a[4(2 ~ k)ﬂ-_— al_f )

The boundary conditions aro as follows: asa-0, the point (0, 0) remams

3 in position but the point (1, 1) i8 mapped intoa =1, z =0,

The condition of analytieity of tho solution leads to the result that C = 0.

The cond1tion that the solution panssces through the point a = 1, z = 0 yields the

- result k*(o) = 7/4,

In conclunlon, tho author exprossos his deep gratitude to Ya. M, Kazhdan

for his manusoript and to 8, X, Godunov for his attention to the work.,*

v

REVERENCES

1, Brushlinskiy, K,V, and Yn, M, Kazhdan, Ob avtomadel'nykh resheniyakh

nekotorykh zadnch gazovoy dinamiki (On self-similar solutions of certain

problems in gas dynamioa), Uspekhi matem, nauk Vol 18, No. 2,
pp. 3"'23, 1963. o .

13



